Justin Tahara, Shaya Parsa, Imran Matin
Professor Voelker
CSE 221

30 January 2021

CSE 221 System Measurement Project

1able of Contents.:

Introduction:
Machine Description:
Testing Environment Setup

CPU, Scheduling, and OS Services
Measurement Overhead:
Time Counter Read Overhead
Loop Overhead
Procedure Call Overhead:
System Call Overhead:
Task Creation Time:
Thread Creation Overhead:
Process Creation Overhead:
Context Switch Time:
Thread Context Switch Overhead:
Process Context Switch Overhead:

Memory
RAM Access Time:
RAM Bandwidth:
Page Fault Service Time:

Network
Round Trip Time:
Peak Bandwidth:
Connection Overhead:
Networks Experiments Comparison:

File System
Size of File Cache:
File Read Time:
Remote File Read Time:
Contention:

Final Results Table

(9]

00 3 N &N &

10
12
12
14
16
16
18

21
21
24
28

31
31
34
39
42

44
44
47
50
53

57

Introduction:

Our goal for this project was to improve our understanding of an operating system that we use on
a daily basis. We wanted to learn how to effectively benchmark and test the performance of
large, complex systems. MacOS is a widely used operating system however, we believe that
most users of the operating system don’t have a proper understanding of how it actually works.
Our team chose to use Imran’s 2017 Macbook Pro as the main device for experimentation. Justin
and Shaya also contributed by conducting research and providing the necessary code in order to
carry out the experiments. All experiments were performed as a group multiple times to ensure
reliability in our results and understanding across the whole group. We implemented all of our
experiments with C. The C compiler we used is GCC and the version is Apple clang version
12.0.0 (clang-1200.0.32.29). The flags that we compiled our code with the C compiler are -lm
-Ipthread -O0 and we used a Makefile to automate compilation and facilitate testing. Since we
were using a standard 2017 MacBook Pro with large amounts of storage and RAM, we didn’t
expect any major implications from the environment. However, we did expect to run into issues
with noise and variance in our performance measurements since our system may have other
processes running simultaneously as well as having older hardware. We also expected to run into
issues when performing the tests because MacOS is a commercial OS and not open source,
therefore we may not have complete access to the underlying system. We estimated 50 hours, but
after completion of the project, we believe we spent a total of 120+ hours.

Machine Description:

We found a lot of information about our specific machine from this link.
Machine: MacBook Pro (13-inch, 2017)
Processor Model: Dual-Core Intel Core 17 (I7-7660U)
Cycle Time: 2.5 GHz
Cache Sizes:
e L1 Instruction (per core) = 32KB
e L1 Data (per core) = 32KB
e L2 (per core) =256KB
e [3=4MB
DRAM Type: LPDDR3
Clock: 2133 MHz
Capacity: 8GB (one slot), 16GB (total)
Memory bus bandwidth: 34.128 GB/s
I/O bus type: 2x Thunderbolt ports, 3.5 mm Audio Port, assuming PCle 3.0
Bandwidth: Thunderbolt Speed = Up to 40 Gb/s, USB 3.1 Gen 2 (up to 10Gb/s)
Disk (SSD):
e Model Name: Apple SSD AP0256J
Capacity: 250.69GB
Transfer Rates: Unknown
IOPs: Unknown
Latencies: Unknown
Note that since this SSD is an Apple commercial disk, we were having trouble finding
information about this.
Disk (Hard Drive): N/A
Network card bandwidth: 1300 Mbps
Operating system (including version/release): macOS Big Sur, Version 11.1

https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.5-13-mid-2017-retina-display-no-touch-bar-specs.html
https://apple.stackexchange.com/questions/276543/finding-peak-memory-bandwidth-on-macbook-pro
https://support.apple.com/en-us/HT210408
https://support.apple.com/guide/deployment-reference-macos/macbook-pro-wi-fi-specification-details-apdd3e47748d/web

Testing Environment Setup

The Operating System that we are using on the ieng6 server is CentOS Linux 7. Below are the
system specifications of the ieng6 server.

Architecture:
CPU op-mode(s):

Number of CPU(s):
Thread(s) per core:
Core(s) per socket:

Socket(s):
CPU Model:
L1d cache:
L1i cache:
L2 cache:
L3 cache:
Page Size:
OS Name:
OS Version:
RAM Size:

x86 64

32-bit, 64-bit

8

1

1

8

Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
32K

32K

256K

20480K

4096K

CentOS Linux

7 (Core)

62G (whole server)

The Operating System that we are using on the Amazon EC2 instance is Ubuntu 180.04LTS
Linux. Below are the system specifications for the EC2 instance.

Architecture:
CPU op-mode(s):

Number of CPU(s):
Thread(s) per core:
Core(s) per socket:

Socket(s):
CPU Model:
L1d cache:
L1i cache:
L2 cache:
L3 cache:
Page Size:
OS Name:
OS Version:
RAM Size:

x86 64

32-bit, 64-bit

1

1

1

1

Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz
32K

32K

256K

30720K

4096K

Ubuntu

18.04.5 LTS (Bionic Beaver)
30GiB (32GB)

CPU, Scheduling, and OS Services

a. Measurement Overhead:

i.

Time Counter Read Overhead

Methodology:

To measure the time taken for code execution, our group decided to use the
function RDTSC from the x86intrin.h library. Our motivation for this choice was
derived from the white paper How to Benchmark Code Execution Times on Intel
IA-32 and IA-64 Instruction Set Architectures by Gabriele Paoloni. RDTSC
provides a way to measure clock cycles, which provides us with very fine grained
time data. The code provided in Paoloni’s paper also handles the problems of
register overwriting and out of order instruction execution (CPUID and
RDTSC/RDTSCP) as well as minimizes the overhead in taking time
measurements. We knew the machine’s CPU clock cycle is 2.5 GHz, therefore we

were able to calculate the conversion factors for cycles to seconds, microseconds,
and nanoseconds.

Therefore, to calculate the overhead for reading the time counter, we just
measured the time difference between two adjacent calls to RDTSC in a for loop.
We executed a total of 1000 samples to have enough data to find the true overhead
in reading time.

We convert cycles to nanoseconds according to the following equation:

2 5GHz = 25%10° Cycles x 1 sec

= 2.5cycles [/ ns

1sec 10’ nanoseconds
Using the above conversion factors for cycles to time as well as different
statistical measures we were able to gather our final overhead measurements for
reading the time counter.

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: We researched articles online in order to get a gauge of the
measurement overhead for reading time with the RDTSC function. Our initial
prediction is based on assuming the RDTSC asm executes 6 instructions and
therefore 6 cycles for a time of 15 ns. In another article here, we read that it could
take 20-25 cycles for a time of 62.5 ns.

Results:

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.strchr.com/performance_measurements_with_rdtsc

ii.

Average Time Taken (ns) | Median Time Taken (ns) | Std Dev. (ns)

12.032 10.800 2.027

Analysis:

Reviewing our results, we see that the both the average and median time taken
measurements are very similar, and that those measurements are slightly faster
than the predictions made in the article referenced in the previous paragraph. The
variability is also low in this measurement as the standard deviation is small.

We attribute this to the strong hardware that we have on the machine we are
using.

Loop Overhead

Methodology:

We conducted the loop overhead experiment by using two loops. The outer loop
was used to execute the experiment 1000 times and therefore gather 1000
samples. The inner loop is the minimal loop that contains just a continue
statement so as to contain no instructions. Thus, the overhead we are measuring in
this experiment is the overhead for this minimal loop.

We decided to execute the minimal loop 1000 times (number of samples taken)
because we assumed that most of our experiments that have a loop would utilize
that many samples. We measured the time of the inner loop by reading the time
before the inner loop, and after the inner for loop. We then took the average of the
1000 samples gathered and recorded the average time taken.

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: Since we execute the loop 1000 times, the actual time taken
per iteration of the loop should be magnified by 1000. Following this article and
this link to the website godbolt, we can look at the assembly line code for the for
loop operation to estimate the cycle count which seems to be roughly 5 ~ 6 cycles.
Using the cycles to nanoseconds conversion from part i, we see that 6 cycles per
loop iteration times 1000 loop iterations gives us 6000 cycles total for a total time
of 1500 ns. We acknowledge that this is a rough estimate since we do not take into
account branch prediction errors and pipelining when converting instructions
executed per cycle to a time measurement.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/47222/how-many-clock-cycles-does-a-for-loop-take
https://godbolt.org/

Results:

Average Time Taken for | Median Time Taken for | Std Dev. for 1000 iter.
1000 iter. (ns) 1000 iter. (ns) (ns)
1983.2096 1878.0000 3221.4096

Analysis:

We see from our experiment that the average time taken was roughly 2000
nanoseconds. Therefore, using the assembly line code calculations from the
previous sentences, we see that our predictions and results are valid. The disparity
in the times as discussed in our predictions is that we are not considering many
optimizations that compilers and modern hardware perform on minimal loops.
This also explains why there is such a large standard deviation between our
samples. So it is reasonable that the observed time is very similar to what we
expected.

b. Procedure Call Overhead:

Methodology:

To measure the overhead of procedure calls, we created 8 different functions and
each function was designed to handle a different number of arguments. The
motivation behind having multiple functions with different numbers of arguments
was to record the differences in overhead due to the number of arguments. In
order to focus on the overhead due to the number of arguments rather than the
contents of the function, we ensured the functions themselves were minimal. A
minimal function is one that only contains a return statement and that is it. We
conducted the experiment 1000 times per function in order to gain enough
samples, and then recorded the average time taken of those samples.

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: We would expect that calling the functions with different
amounts of arguments would cause a series of MOV operations per argument, in
order to move the argument values into the registers. Considering this fact and
according to our research using this article, a typical MOV instruction can take

anywhere from (theoretically) 1 cycle to order of 100 cycles. If we predict that on
average each MOV instruction takes 100 cycles, then we would expect the
overhead to be roughly 125 nanoseconds for 50 cycles multiplied with the number
of arguments the function has.

https://www.quora.com/How-many-instruction-cycles-does-the-MOV-instruction-take-for-different-addressing-modes

Result:

Number of Average Time Median Time Std Dev. (ns)
Arguments Taken (ns) Taken (ns)
0 12.425120 10.800000 2.699730
1 19.939520 12.000000 3.301204
2 12.000000 12.353360 7.516833
3 18.144160 12.000000 8.057899
4 15.401760 14.400000 8.885459
5 12.933760 12.800000 7.157081
6 12.738640 12.000000 21.476651
7 17.823760 14.800000 5.454669
Analysis:

We assumed that if there were more arguments it would take longer to call the
corresponding function but there didn’t seem to be a correlation between having
multiple arguments compared to having no arguments at all. Our predictions
could have been wrong because we assumed a large number of cycles for the
MOV operation.

Another factor in the execution of this code is that instructions are executed in a
variable amount of cycles, therefore the total cost could have been amortized
across the whole code execution. Since we are also using a computer with a
modern CPU, 16GB RAM, the execution could also be magnitudes faster, which
would explain the results we have gotten. It is important to note that modern
machines use aggressive pipeline and parallelism to execute instructions,
therefore the overhead of the MOV instructions could be minimal due to hardware
optimizations. These hardware optimizations we believe are also the reason for
the large standard deviations in our measurements. However, the number of
samples we acquired should allow us to handle this variability.

From our experiment with testing the overhead of RDTSC, we see the overhead in
this experiment are very similar. We are interpreting this as procedure calls are
very efficient on this machine since the main overhead is coming from our

benchmarking code. Therefore, we see the increment overhead of an argument in
our results is so minimal that it cannot be seen.

c. System Call Overhead:

Methodology:

To perform this experiment we measured two syscalls: getpid and kill. For each
system call, we gathered 1000 samples by executing each syscall in a C for loop
and recording the time taken.

For the getpid syscall, a minimal syscall, we simply get the current time, execute
getpid, and then get the end time. We have two versions of this test. The first runs
a C for loop for 1000 iterations to gather samples, whereas the second only runs
getpid once but executes this experiment 1000 times using a bash for loop. The
reasoning for this is because we were seeing very different results from the two
methods of sampling, therefore we thought it was best to analyze both.

For kill we had to do a little bit of setup by forking a new process that we could
kill. If the child process executes first, the child process will execute the raise
syscall with the SIGSTOP flag, therefore context switching to the parent process.
The parent process will then take the current time, execute the kil/ syscall with the
SIGKILL flag, and then take the end time. We then reported the average overhead
time per system call. Note, to gather our results, we only executed one syscall test
at a time to avoid noise in our results.

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: For the kill syscall, we could not find reliable benchmarks so
we will reason out a prediction. The functionality of this syscall is to send a signal
from one process to another. Therefore, since we are sending a signal to another
process we will be using interprocess communication (IPC). There is overhead
with this (in our case this is a procedure oriented system), as the kernel handles
this. Therefore, we predict the overhead of this syscall to be ~500ns.

We believe that the getpid syscall is very minimal, therefore it should really only
have the overhead of crossing the protection boundary into the kernel and back.
Our procedure call overhead was ~15 ns in the Procedure Call Overhead
Experiment, therefore our predictions for the overhead of syscalls should be much

10

larger due to the costly operation of crossing a protection boundary into the
kernel. We expect to see a total overhead time of ~200 ns for this syscall.

Results:
System Call Average Time Median Time Std Dev. (ns)
Taken (ns) Taken (ns)

getpid() (C loop) | 20.140000 12.000000 318.794382
getpid() (bash 14080.99639 11831.2 6697.515962
loop)

kill() 4395.408800 3658.800000 5334.891857
Analysis:

We will start by analyzing the results for gefpid. We find it very interesting that
the two different sampling methods had such different results. It is tough to
compare these results against the ki// syscall results because the functionality is
much different, therefore we will reason about these results. It could be that when
running the experiment in the bash loop, we are continuously spawning new
processes which are altering the OS’ data structure for tracking process ids very
rapidly. Therefore, the operation is taking much longer because there could be
locking on this data structure to ensure that it is consistent when processes read it,
and therefore causing processes to wait for this. In the case of the C loop
experiment, we are only experiencing the overhead for the loop and the OS’
process id data structure is not being changed during the test. Therefore, reading
this data structure for the process’ id is much faster. Another point that must be
made is that the system is potentially caching the getpid syscall when it is run in
the C loop, therefore calling it multiple times sequentially is not truly calling the
syscall but instead going to the cache which is much more efficient.

The results for kill are less surprising when compared to getpid. We believe that
the kill syscall has much more overhead because it must use interprocess
communication, in this case procedure calls into the kernel, to complete its
functionality. Kill will also return a value for whether the signal sent was a
success, therefore it may wait to see if the signal it sent was a success which could
take much longer.

For both system calls, we can see that the overhead is much larger than for a

procedure call. Yes, the getpid experiment has varied results, but the kil syscall is
clearly much more costly. As discussed earlier, this difference in overhead is due

11

to crossing the protection domain into the kernel to execute the syscalls. As
discussed in previous sections, the large variability in all of our measurements
most likely come from the optimizations in modern hardware.

d. Task Creation Time:

i.

Thread Creation Overhead:

Methodology:

We measured the thread creation overhead by first reading the current time, then
creating a new thread with the pthread create() function from the pthread.h
library. pthread create() creates a new thread and will both execute the function
specified when it is run and return the thread id for that thread to its parent. We
will not know whether the parent or the child or another process or thread will run
immediately after the thread creation, therefore we placed two different
statements to read the end time for thread creation, one at the beginning of the
child thread and one right after the call to pthread create() in the parent.
Unfortunately, we are unable to know whether the parent or the child is the next
thread context switched to, therefore there could be excess time measured due to
the context switches. We handle this by using an upper bound 20,000 ns for the
time taken to create a thread, so if a measurement is larger than this we repeat this
sample (refer to the analysis section for the reasoning behind this upper bound).
We also ensure that the parent waits for the child thread to complete by using join
after it has taken its end time. The reason for this is because we may switch from
the parent to the child and back to the parent. Then, if we do not join we will get
the wrong end time value since the child has not returned it’s clock cycle value
even though it is the most accurate one. Once we have both end times, we
compare to see which one has a lower cycle count in order to get the most
accurate overhead of thread creation.

We then run this experiment 1000 times using a bash script to record all of our
results and calculate the average and median times for thread creation.

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: Looking at this article, we see that there is a comment made
by a user stating that their machine takes roughly 10 microseconds in order to
create a thread. Their machine is using an Intel Core i5-2540M which is from
2011 which would be 10 years ago. We know that the machine used may be
outdated, but the process of experimentation is the same so with some hardware

12

https://stackoverflow.com/questions/3929774/how-much-overhead-is-there-when-creating-a-thread

improvements, we would assume our results will be slightly faster for a predicted
overhead of ~10,000 ns. We expect the overhead to be small compared to the
overhead for process creation because we know that processes are lightweight
abstractions.

Results:

Average Time Taken (ns) | Median Time Taken (ns) [Std Dev. (ns)

11754.554399999999 10910.9668076800 3189.126610825879

Analysis:

From our results, we can see that the time taken to create a thread is relatively the
same compared to the article that we found. 10 microseconds converted to
nanoseconds would be 10,000 nanoseconds meaning our times are basically the
same. We see from our results for process creation that it is much faster to create
threads rather than processes, which we attribute to the fact that threads are much
more lightweight abstractions. The slight difference can be attributed to random
noise when context switching between different threads or processes. If there are
many of these random context switches in our samples, our data can be skewed.

We attempted to limit the noise in our results from context switching by upper
bounding our measurements at 20,000 ns since those can be considered invalid for
measuring the cost of thread creation. The upper bound allows us to remove the
outliers we were initially seeing in our results, and these outliers are occurring
because they measure the time it takes to create the thread as well as many
context switches between threads and processes before we measure the end time
in either the parent or child thread. We only want to gather times for thread
creation, therefore this allows us to filter out those times that include extra
operations. There still exists variability in our experiment, however the standard
deviation is acceptable as it is a complete order of magnitude smaller than our
measurements. There will always be noise in this experiment since we cannot
control context switches.

It is important to note that we used the bash script method to test because we were
initially getting results that showed the time for the thread creation increased as
we gathered more samples in the same program. We understood this as invalid
and that is why we changed our methodology.

13

il

We were however, surprised that the article experimented with 2011 hardware and
we are using modern hardware, yet, our times are very similar. We think this is
due to the fact that in order to create a thread, the operations that need to happen
are still the same and so the hardware difference might not play a key role in
optimizing thread creations.

Process Creation Overhead:

Methodology:

The process creation overhead experiment was performed as follows. We first
create a shared pipe for data transfer between the parent and child process. Next
we take the current time as our start time. We then execute the fork system call to
create a new child process. Once we have created the child process, there are 2
cases that occur since we cannot determine whether the parent or the child process
will execute first.

Case 1: Parent Process Executes First

In this case, the parent process will execute first and will take the current time as
the end time. The parent process will then continue executing and execute the
waitpid and kill syscalls to ensure the child process terminates before continuing.

Case 2: Child Process Executes First

In this case, the child process will execute first and will take the current time as
the end time. It will then write the end time into the shared pipe for the parent
process to read and exit.

At this point, the parent process will be executing because either the child process
terminated or the parent process waited until the child process terminated. Next
the parent process will read from the shared pipe to retrieve the end time taken
from the child process. Since we do not know whether the child process or parent
process executed first after the fork, we compare the end time taken in the parent
and the end time taken in the child and use the one that is earlier. The reason for
this is because we only want to measure the process creation time, therefore we
want the time that was taken as soon as possible after the call to fork. Finally, we
compare the time taken to an upper bound of 1,000,000 ns (the reasoning behind
this upper bound is discussed in the analysis section). If the time is below the
upper bound then we save it, else we don’t.

We then run this experiment 1000 times using a bash script to record all of our
results and calculate the average and median times for process creation.

14

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: According to Table 9 of the Imbench paper, we see that
process creation time should be roughly 0.5 ~ 1 milliseconds. However, the
machine that was used to get these results was extremely old and so we predict
that with our machine’s hardware we should see a process creation overhead that
is faster than 0.5 ~ 1 milliseconds.

We also know that processes must initialize much more data than threads during
creation because they must create large data structures like the Process Control
Block (PCB). This overhead does not exist for creating threads, therefore we
expect this to increase the overhead of process creation by a large amount of time.

Results:

Average Time Taken (ns) | Median Time Taken (ns) | Std Dev. (ns)

174440.24979253113 149926.0 132257.7841441311

Analysis:

We can see in our results that the average time taken to create a process is 174440
ns whereas the average time taken to create a thread is 11754 ns. These times
show that it takes a complete order of magnitude longer to create a process than to
create a thread. We expected this difference as processes are much heavier weight
abstractions than threads. As we discussed in our prediction, processes must
initialize large data structures like the PCB, and therefore have a lot more
overhead than threads during creation.

We overpredicted the overhead for process creation, and we assume that this is
because we based our prediction off of hardware that was much older than our
machines. Modern hardware today is extremely optimized, and therefore this will
greatly speed up the operation of process creation.

We also determined that experiments that had times greater than 1000000 ns were
invalid for measuring the cost of process creation The upper bound allows us to
remove the outliers we were initially seeing in our results, and these outliers are
occurring because they measure the time it takes to create the process as well as
many context switches between threads and processes before we measure the end
time in either the parent or child process. We only want to gather times for

15

process creation, therefore this allows us to filter out those times that include extra
operations. The variability in our data, as shown by the standard deviation, is
large in this case. We attribute this to the fact that creating a process is a large
operation that may take longer depending on the state of the machine as well as
the fact that we cannot control context switches during process creation.

It is important to note that we used the bash script method to test because we were
initially getting results that showed the time for the process creation increased as
we gathered more samples in the same program. We understood this as invalid
and that is why we changed our methodology.

e. Context Switch Time:

1.

Thread Context Switch Overhead:

Methodology:

We first create a child thread using the pthread create() function and specify that
the created thread should run a function that will return the end time. Next, in the
parent thread, we then read the current time. From here the parent thread will call
the pthread join() function in order to force a context switch to occur. Once we
begin executing in the child thread, we read the current time and return that time
to the parent thread (since it executed join) in order to calculate the time taken for
a context switch. The difference between this experiment and the experiment in
Part d is the location in which we read the start time (after the creation).

Note that due to the unpredictability of context switching, we cannot ensure that
the child thread is immediately context switched to, and therefore there may be
unwanted variability in our measurements. We handle this in two ways. The first
is by wrapping all the code for the paragraph above in a while loop that has a
condition checking that the difference between the start and end time (technically
the number of cycles passed from start to end) is positive. If it is not positive, the
test is run again. This is to handle the case of the child thread executing and
returning before the parent thread has saved the start time. The second is by
checking if the time we are recording is lower than the upper bound of 10,000 ns
(the reason for this upper bound is explained below). This is to remove outliers
(which we saw when analyzing our results) which occur because we do not
directly context switch from the parent thread to the child thread.

We then execute this test using a bash script that will collect 1000 samples, and
we use these to compute the average and median thread context switch overhead.

Prediction:

16

Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: According to this article we see that generally context
switches can take anywhere from 100 ~ 3000 nanoseconds, depending on the
processor and the size of the context (in this case the size of the thread) that is to
be saved and restored. We predict that our thread context switch time will be
closer to 100 ns since our processor is very powerful and the overhead of saving
and restoring threads is very low. This measurement should be a lot lower,
thousands of ns lower, than the time required to context switch between
processes.

Results:

Average Time Taken (ns) | Median Time Taken (ns) | Std Dev. (ns)

6996.019 7159.6 1539.2243498281855

Analysis:

We can see in our results the average and median times for our experiment were
both ~7000 ns. This is significantly larger than what we predicted. We believe that
one of the reasons for this is we estimated the weight of a thread to be lower than
it actually is. Another reason for this misprediction is that we assumed our
processor, though strong, was not as strong as we believe and therefore needed
more time to perform this context switch. However, the overhead to context
switch for a thread is much lower than the overhead to context switch for a
process as we discuss in the next experiment.

The reason that we bounded our times from our samples as less than 10,000 ns is
because we saw that we were not directly timing the one context switch between
the parent thread to the child thread. Instead, we were measuring potentially many
context switches both between processes and threads before we finally arrived at
the child thread. For that reason, we bounded our valid times to ensure we were
measuring only the time for one thread context switch. For measuring thread
context switches, we are not worried about the standard deviation in our data
because when compared to process context switches the overhead is still
relatively small.

It is important to note that we used the bash script method to test because we were
initially getting results that showed the time for the context switch increased as

17

https://www.quora.com/How-long-does-a-context-switch-take

1l.

we gathered more samples in the same program. We understood this as invalid
and that is why we changed our methodology.

Process Context Switch Overhead:

Methodology:

The process context switch overhead experiment was performed as follows. We
first create a shared pipe for data transfer between the parent and child process.
We then execute the fork system call to create a new child process. Once we have
created the child process, there are 2 cases that occur since we cannot determine
whether the parent or the child process will execute first. If the child process
executes raise first, the parent process will be context switched to and when the
parent process executes waitpid, nothing will happen (we confirmed this when
testing with print statements tracking to track execution). If the parent process
executes waitpid first, the child process will be context switched to and when the
child process executes raise, it will force a context switch back to the parent
process (we confirmed this when testing with print statements tracking to track
execution). At this point, we know we will always be in the parent process
irrespective of which process executes first. Now, there are two cases that will
occur for actually timing a context switch between two processes. These cases
arise because we are unable to predict which process will execute first.

Case 1: Before Kill...After Raise...After Kill...

In this case, the parent process will begin by taking the start time. Next, the parent
process will execute the kil/ syscall which forces a context switch to the child
process. The child process will then begin executing after the raise syscall and
read the end time. Finally, the child process will write the end time to the shared
pipe and exit. This will force a context switch back to the parent process in which
it will then read the end time from the child process.

Case 2: Before Kill...After Kill...Before Read...After Raise.

In this case, the parent process will begin by taking the start time. Then the parent
process executes the kill syscall, and therefore we expect to see a context switch
back to the child process. However, unlike what we assumed, it does not force a
context switch to the child process and instead continues executing in the parent
process (we elaborate more on why this situation occurs below). The parent
process then executes the read syscall on the shared pipe, however the child
process has not written the end time to the pipe yet. This forces a context switch
back to the child process since this is a blocking pipe, and the child process will
then take the end time, execute the write syscall on the shared buffer with the end
time as its data, and then exit. This forces a context switch back to the parent

18

process, and the parent process can now successfully execute the read syscall on
the shared pipe to access the end time taken in the child process. Note however,
that in this case the timing measurement includes the extra overhead of the parent
process executing the kil/ syscall on the child process and shared pipe
respectively.

Once we have the start and end times, we calculate the total time taken in
nanoseconds. We then only select times that are below the upper bound of
1,00,000 ns. We explain why this is the upper bound selected in our analysis. We
then run this experiment 1000 times using a bash script to record all of our results
and calculate the average and median times for a process context switch.

We are unsure why the kill syscall does not consistently force a context switch
from the parent to the child. However, after doing some research we believe that it
could be that calling raise with SIGSTOP makes the child stop itself and context
switches to the parent, but the child does not finish stopping itself before the
parent executes kill. If that happens the kill call is void and the parent process
continues to read, which resumes the child process. We acknowledge that there
could be other reasons for why this is occurring that we have not understood.

Prediction:
Base Hardware: Since this experiment is software oriented, we don’t expect there
to be any base hardware overhead.

Software Overhead: According to the Imbench paper, they estimate that context
switches between processes should be in the order of 20 microseconds. However,
since we have modern hardware and a relatively strong machine, we would
estimate a lower cost for process context switches. We think that the process
context switch overhead should be roughly around 5000 nanoseconds due to our
powerful processor. This measurement should be significantly higher, thousands
of ns higher, than the time to context switch between threads because processes
are much more heavyweight (PCB is very large on modern OSes).

Results:

Average Time Taken (ns) | Median Time Taken (ns) | Std Dev. (ns)

25929.59744680851 21828.4 10960.392370544414

Analysis:

19

https://stackoverflow.com/questions/61430874/sending-a-sigcont-fails-silently-with-unpredictable-behavior-linux

We can see in our results that the median time taken to context switch between
threads is 7159.6 ns whereas the median time taken to context switch between
processes is 21828.4 ns. These times show that it takes a complete order of
magnitude longer to context switch between processes. We expected this
difference as processes are much heavier weight abstractions than threads.
However, we underpredicted the time for a context switch between processes. We
overestimated the strength of our processor, but more importantly this shows that
we underestimated the size of processes. From previous courses, we know that
Process Control Blocks (PCB) have continued to grow over time, and today they
are very large. Therefore, saving and restoring PCBs are a very heavyweight
operation and will take a lot of time.

As mentioned above, we have 2 cases and we can assume that each case happens
with roughly a 50% chance. The second case has extra overhead of performing a
kill system call. We measured the extra overhead of this system call in a seperate
test (System Call Overhead) and it has a median time of 4395.4 ns. We did not
subtract this amount from our measurements in the results section above, but we
wanted to discuss the potential difference in our results caused by the kill system
call.

We also determined that experiments that had times greater than 1,00,000 ns were
invalid for measuring the cost of one context switch between processes. The
upper bound allows us to remove the outliers we were initially seeing in our
results, and these outliers are occurring because they measure many context
switches between threads and processes before we measure the child process’ end
time. We only want to gather times for context switching directly from the parent
process to the child process. This experiment still has a large standard deviation,
but this is normal since the machine will try to optimize performing a large
operation such as a process context switch and this is not always possible.
Therefore, we will see noise in our data due to the unpredictability of when
context switches are handled.

It is important to note that we used the bash script method to test because we were
initially getting results that showed the time for the context switch increased as
we gathered more samples in the same program. We understood this as invalid
and that is why we changed our methodology.

20

Memory

a. RAM Access Time:

Methodology:

We began by first reading and understanding the paper Imbench: Portable Tools
for Performance Analysis by McVoy and Staelin. We understand that most
machines today use caching to optimize memory accesses and that most memory
access patterns exhibit temporal or spatial locality. Therefore, we took the

following approach.

In our experiment, for each size in the range 32KB ~ 1.5GB, we malloc an array
of chars that we then loop through using different stride lengths ranging from 128
bytes to 16MB because we want to observe the effects of reading data from the
different levels in the cache as well as this is what the Imbench paper used as well.
We decided to use the different file sizes starting from lower than the size of the
L1 cache all the way to larger than the size of the L3 cache (into main memory).
For each combination of array size and stride length, once we have malloced the
array, we fill the array with random chars in order to make sure the array is stored
in memory. We then malloc another 16MB array that is used for the sole purpose
of clearing out the cache of any data that we brought in while writing random
characters to the array that we will be looping through. The reason why we
initialize this flushing array to 16MB is because we want to make sure that data in
cache is cleared properly. Looking at the size of the L3 cache on our machine
which is 4MB, we decided to multiply that value by 4 to ensure that most or all of
the data will be cleared.

Once we have completed the initialization process for the array we are going to
read and we have completed flushing the cache, we enter our for loop where we
begin our reads. The for loop is iterating 1000 times to amortize the time it takes
to perform a read across each stride size, file size combination. Remember that
the goal of this experiment is to see how long it takes for reading different file
sizes with different stride lengths, therefore we want to have a statistically strong
measurement and that is accomplished with many samples. Each time we iterate
through the loop we first time the time it takes to access part of the array at some
index. Initially that index is the length of the array that we malloced minus 1. We
then subtract the stride length from the current index as we iterate through the
loop in order to observe the effects of accessing different parts of the cache
without the effects of prefetching affecting our read times. If we reach the
beginning of our array, we wrap back around to the end of the array. Finally, we
have a bounds check where we ensure that the time we have taken is between 0

21

http://www.usenix.org/publications/library/proceedings/sd96/full_papers/mcvoy.pdf
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/mcvoy.pdf

and 1000000 ns. If not, then we set the time for this sample to 0 (the reason for
this upper bound is described below in the analysis). Once we have completed
1000 loop iterations, we save the results for this array size and stride combination
and then repeat until we have tested all array size and stride combinations.

We used very large arrays (maximum 1.5GB) because we needed to access data
that was not cached in the L1 or L2 cache and that meant accessing data very far
away from previous accesses. We know that only a certain amount of data is
brought into a cache block on every cache miss. Therefore, at some point we will
be accessing data in a large array that has not been brought into the cache along
with previous data. This cache miss will result in a spike in the time to access the
data but it will also bring in a whole set of new data in a cache block. Therefore,
to continually have cache misses, we would need to continuously access data that
was not brought in a previous cache block.

Prediction:

Base Hardware: Referring to this post and this article, we can see that for each
level of memory, access time takes a different number of cycles. The cycle count
and runtime is as follows:

L1 Cache =4 cycles (1.6 ns)

L2 Cache = 10 Cycles (4 ns)

L3 Cache =40 ~ 75 Cycles (16 ns ~ 30 ns)

Local DRAM = 150 Cycles (60 ns)

Software Overhead: We think that the only real software overhead we might
experience in this experiment is if we access the memory but that causes a page
fault. Then we would have to trap to the kernel and we would see a huge software
overhead. However, this should not affect our results, because we are getting rid
of extreme outliers in our results. We also know that there is a ~12ns delay for
taking time measurements, therefore this overhead will be included in each
measurement of RAM access. Since every operation has this delay, all times will
be relatively larger by a small amount but not incorrect because all measurements
are affected in the same way.

Results:

22

https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

RAM Access Time (Average)

600 - 128 B
8 = 1KB
w
g 4 KB
n - 16 KB
g 400 - 512 KB
[
8 = 1MB
8
§ = 4 MB
s = 16 MB
Zz 200
f= == Prediction
c
e
<
[}
£
= 0

15 20 25 30

Log Base 2 of File Sizes

RAM Access Time (Median)

400 - 128 B
8 - 1KB
w
3 4KB
@%» 300 - 16 KB
& - 512 KB
[2]
g = 1MB
8 200 w4 MB
2
= - 16 MB
=
£ == Prediction
< 100
g
8
(]
S
= 0

15 20 25 30

Log Base 2 of File Sizes

23

Analysis:

Our results are slightly different than those shown in the Imbench paper and from
the values calculated using the links referenced. We can see that if we look at the
average times against the stride lengths in the Average time graph, there is a
constant growth in runtime throughout the different combinations of array sizes
and stride lengths. Looking at the Median graph we can see an even clearer view
of the sharp increases in runtimes. Although our results do not show the plateaus
with each stride size as seen in the Imbench paper, we can definitely see a trend in
which the time taken grows as we are entering different parts of the cache. We
utilized the back-to-back load latency discussed in the Imbench paper by
performing continuous cache miss reads from the file by traversing the arrays in
backwards order to mitigate the prefetching effect and also use the stride sizes to
index to different parts of the array. The 1KB stride length closely resembles the
lines that are seen in the Imbench paper as it plateaus and stays constant
throughout the rest of the experiment once it has reached a certain array size. One
reason as to why our graphs take slightly longer compared to our calculations
made in our predictions may be due to the implementation of reading the array
backwards. This means we are not prefetching any of the data in the cache. It may
not explain all the differences but may attribute to some of the results seen in our
graphs.

We determined that samples that had times greater than 1000000 ns were invalid
for measuring the overhead in performing a RAM access. The upper bound allows
us to remove the outliers that occur due to page faults since we are only trying to
measure RAM accesses. We were initially seeing these outliers in our results and
skewing our data, therefore at a later stage in the experiment we added the upper
bound to combat this noise.

Note that we didn’t use a standard deviation metric in this example as it was not
useful in understanding our results.

b. RAM Bandwidth:

Methodology:

We began by mallocing a 512MB array of chars in memory in order to create a
large array that we could read and write from. We then replaced each byte in the
array with a random char. We note that this will cache the array in memory. This
is not a problem since we are testing the bandwidth of RAM and do not want to
perform page faults to the disk. This test then has 2 parts to it, reading and writing
to RAM, where the read test is performed first, then the write test.

24

Test 1: Read

We first sample the current time as the start time. We then create a new x byte
array of chars, where x is the number of loop unrolled instructions we are using,
that we will use to store the data we read in from memory. Next, we begin our
loop unrolling. For each loop iteration, we read x bytes of memory from the start
of each x byte chunk in memory one by one and save the byte read into our x byte
array of chars. Once we have read the complete array by completing all the for
loop iterations, we take the current time as the end time. Note that x will take on
the values 16, 32, and 64 and the results and analysis for this decision is below.

Test 2: Write

We first sample the current time as the start time. Since we already have a 512MB
array of chars in memory, we used that as the memory we will be writing to.
Next, we begin our loop unrolling. Following the same logic from the read tests,
we write to memory in x byte chunks using x loop unrolled instructions. Each
loop unrolled instruction writes the char 1’ to a byte in memory. For each loop
iteration, we write x bytes of memory from the start of each x byte chunk in
memory and therefore write each byte sequentially from the array in x byte
chunks. Once we have written the complete array by completing all the for loop
iterations, we take the current time as the end time. Note that x will take on the
values 16, 32, and 64 and the results and analysis for this decision is below.

Then, using the total time taken for each test, we converted the time taken in
nanoseconds to seconds, converted to MB/sec by dividing 512MB by the total
amount of seconds taken, and then finally dividing that GB to obtain GB per
second. This provides us the bandwidth of the reading and writing operation.

We then run this experiment 100 times using a bash script to record all of our
results and calculate the average and median times for each number of loop
unrolled instructions (16, 32, 64) for the read test and the write test.

Prediction:

Base Hardware: Using the following articles: articlel, article2 we calculated the
memory bandwidth. We used the Memory Clock Frequency and the Memory Bus
Width which we already have from the machine description to do the calculation

of the memory bandwidth:
2133 Mhz x (64 bit/8bit) X 2 = 34.128Gb/s

25

https://stackoverflow.com/questions/8107739/main-memory-bandwidth-measurement
https://codearcana.com/posts/2013/05/18/achieving-maximum-memory-bandwidth.html

We would expect the Memory Read bandwidth to be larger than the Memory
Write bandwidth as generally speaking there is roughly a 3 times performance
difference between memory read and memory write.

Software Overhead: We expect that in this experiment the only potential overhead
from software will be the overhead from executing a minimal loop. This is
because we are using loop unrolling in a loop, and the loop itself could add a
small overhead (roughly 2ps from results in test 1a.ii). We also know that there is
a ~12ns delay for taking time measurements, therefore this overhead will be
included in each sample after the for loop completes. Since every sample has this
delay, all times will be relatively larger by a small amount but not incorrect
because all measurements are affected in the same way.

Results:
Read Bandwidth Results
Average GB/sec | Median GB/sec Std Dev.
16 loop unrolled | 15.892250559337 | 16.411738182249 [0.9255905510168
inst. 998 052
32 loop unrolled | 40.053863536277 | 40.8663837599 6.1865876631457
inst. 37
64 loop unrolled | 103.47845110131 | 108.9466514456 | 17.789285973034
inst. 202 282
Write Bandwidth Results
Average GB/sec | Median GB/sec Std Dev.

16 loop unrolled
inst.

19.183352983218

19.50367535525

0.8569416828962
045

32 loop unrolled | 52.302647618511 | 54.46222853535 |6.7844819283180
inst. 99 65
64 loop unrolled | 119.89727329285 | 124.8807772152 | 18.703018260348
inst. 803 99

Analysis:

Our results are very different from what we predicted to see. As shown in the
table, as we varied the number of loop unrolled instructions our bandwidth for
both reading and writing increased significantly. Another surprising result is that

26

all measurements for the read bandwidth are lower than the write bandwidth
which should not be true according to our predictions. Interestingly though, the
standard deviation across all tests are relatively small which means those numbers
were very repeatable during our sampling process. Let us discuss why we think
we are seeing these results.

Today’s memory operations and hardware in general are very complex and have a
number of hidden optimizations. Since we used a bash loop to gather our samples,
this means that a new process is spawned for every sample. What this also means
is that a new 512 MB array of chars is malloced onto the heap for every process
that runs. However, since we fill the array with chars before performing the tests
we know that main memory will contain the data for the array. When reading
from the array we are able to read so much data so quickly from the cache that we
are seeing minimal time needed to read a lot of data. The same is true for writing.
This explains why our speeds are so high, but does not explain why we see so
much variability in the difference between loop unrolled instructions.

We believe that our calculations for bandwidth as a throughput measure are
correct, therefore we are not worried about our conversions to calculate the final
output metrics. Therefore, we believe that the variability that arises from the
difference in loop unrolled instructions comes from the fact that the instructions in
the loop are independent of each other and therefore are executed in parallel. This
parallelism is performed by the hardware and will allow for major performance
improvements. We also remove more of the overhead from the loop and missed
branch predictions as we increase the number of loop unrolled instructions (note
that in an earlier experiment we saw that the loop overhead for 1 minimal loop

1983.2096 ns
1000 iterations 0. 1983ns).

iteration is
Another hardware optimization that we believe could be happening is cache line
prefetching. Since we are continually reading from the same block of memory
sequentially, the hardware could be bringing data from main memory all the way
into the L1 cache before we access it allowing there to be major improvements in
read and write time. Modern machines today focus on performance and use
aggressive caching to do this, therefore we believe that this is the reason for the
variability in our results.

We attempted to perform the test with other methods for read and writing from

memory using library functions like memset, memcpy, and bcopy but we decided
to use loop unrolling to avoid the overhead of those library functions.

27

C.

Page Fault Service Time:

Methodology:

In this experiment we are timing how long it takes for the system to service a page
fault. In order to cause a page fault, we first flush the main memory to remove any
of the physical pages that contain the data we want to access because having that
data in physical memory would alter our measurements since no page fault would
occur. We first malloc sixteen 1GB arrays of chars and for each array we fill it up
with random characters. By accessing every byte in every 1GB array, we will
completely flush out any data that was in the 16GB main memory before.

Logically, this occurs because we are accessing data malloced into the processes
virtual address space that is not currently in the machine’s physical memory.
Therefore, accessing the malloced data will cause page faults to bring that data
into the machine’s physical memory for writing.

At this point main memory’s physical pages should only contain data from the
1GB arrays. We then memory map a file into the current processes’ address space
by running the mmap procedure. This procedure will give us a pointer to the
location in memory that stores the data for that file. Note that mmap only maps
the file to the process’ virtual address space, and therefore the file data is not in
any physical page yet. Next, we access an entire page, which is 4096KB, that was
mapped into the process’ virtual address space. The first access will cause a page
fault to occur because we have completely flushed our main memory, meaning
physical memory should only contain the data from the 1GB arrays. Then all
reads for the rest of the pages should be reading from memory. The code that we
measure is the code used to access one entire page of data from the memory
mapped file because that memory mapped file is in virtual memory but not
physical memory, and therefore will cause a page fault on the first access only. We
then use a bash loop to take 10 samples of page fault service time, and calculate
the average across those as our average page fault service time. We would have
liked to gather more samples however the operation of mallocing and writing a
total of 16GB per sample was a very time-intensive operation.

Prediction:

Base Hardware: After doing some research to get an idea of how long a typical
page fault service time takes, we came across the following Wikipedia page,
which considers a page fault to be a function of rotational latency + seek time.
They estimate that although these latencies differ from machine to machine, on
average, a typical machine takes around Sms for rotational latency and 3ms for
seek time. This results in a page fault service of § ms.

28

https://en.wikipedia.org/wiki/Page_fault#Performance_impact

We feel that this number is very large (especially since our PC has an SSD with
no disk heads). Since the machine we are using has SSD memory, we have no
rotational latency. Furthermore, we expect our seek time to be much less (maybe
100x times faster) than spinning disks. We predict this number will be more on
the order of 10s of microseconds.

Software Overhead: In order to test the page fault service time, we are accessing a
whole page of data from our buffer in a loop. The software overhead that could be
added here is the loop overhead measured in experiment la. ii (roughly 2us).
However, the loop in that test ran for 1000 times, whereas this experiment will
run for 4194304 times (about 4000x longer) so perhaps some 5-8 ms of our
measured results are just the loop overhead. We also know that there is a ~12ns
delay for taking time measurements, therefore this overhead will be included in
each measurement of page fault service time. Since every measurement has this
delay, all times will be relatively larger by a small amount but not incorrect
because all measurements are affected in the same way.

Results:
Average Page Fault Service Time 36767093.92 ns = 36.76709392 ms
Median Page Fault Service Time 30849180.0 ns = 30.8491800 ms

Average Page Fault Read Time per Byte | 8.765958290100098 ns

Std. Dev Page Fault Service Time 23656235.130997702 ns

Analysis:

Our results show that the average page fault service time is 36 ms (36.76 ms),
however there is a lot of variability in our data. This is in line with our prediction
and we believe this is a valid measurement because page faults mean going to
disk and that is an operation that takes time in the order of milliseconds.

Using the command getconf PAGESIZE, we see that MacOS has a page size of
4096KB. Therefore dividing the average page fault service time by the size of a
page, we get:

36767093.92 ns / (4096 x 1024) bytes = 8.765958290100098 ns/byte
which is the average time to access a byte including the time needed to service a
page fault. When we compare this result to the latency of accessing a byte from
main memory, which takes 15 ns/byte, we see that it is lower which is not what
we expected. We believe that we are seeing a low average due to caching effects
and prefetching by the underlying system through memory operations. Also it is

29

https://www.quora.com/How-much-faster-is-the-SSD-Drive-than-a-conventional-HDD-in-actual-use

important to note that only the first byte access will cause the page fault and the
rest should be read from memory (actually the L1 cache). Therefore, the effect of
the 1 byte that had a large latency is hidden when we calculate the per byte
average.

SSDs are very optimized for certain tasks, and SSDs are 1000x faster than hard
drive disks. We know that the hardware we are performing is very strong, but this
test just goes to show how slow disk accesses are.

As mentioned earlier we were only able to run 10 samples of this experiment
because it took a long time due to the need to flush RAM before each experiment.

30

Network

a. Round Trip Time:

Methodology:
For this experiment we have two C files, one of which contains the client code,
and one of which contains the server code.

The client code is what contains most of the functionality for this test. We always
run the client code on our local machine. The client will create a socket, choose
the IP address of the server to connect to based on the test we are doing (local or
remote), and then connect to the server on port 5000. Now that we have connected
to the correct server we begin our experiment. In a for loop, we execute a “ping”
operation many times. We coded a ping operation as sending a 64 byte
zero-initialized buffer to the server and immediately waiting to receive it back. In
our for loop, we calculate the start time, execute a ping operation, then calculate
the end time providing us with the total round trip time for this sample. We then
perform this process 100 times to get a stable average round trip time.

The server code is written to be very simple. The server will open a new socket,
bind to the socket on port 5000, and then listen on the socket. It then will
infinitely loop to wait for a client connection request and accept it once one comes
in. Then we have hardcoded the number of “pings” we will send to the server, so
we have a for loop that will execute recv and send in that order for the number of
ping times. This allows us to receive a message (which we have specified as 64
bytes) and then immediately send that message back to the client for multiple
samples. No timing measurements are taken on the server. This server code can be
ported directly from the localhost onto our remote machine and run the same way.

To run the test for localhost to localhost we specify the server address as 727.0.0.1
and for localhost to remote host, we specify the server address as the ip address of
our Amazon EC2 Server.

Prediction:

Base Hardware: The network interface cards of both the local machine and the
Amazon EC2 server are used to receive and transmit packets of file data across
the network. Both of these network cards have a max bandwidth at which they
can transmit data to and from the network. Therefore, the performance of these
cards could limit the performance of the remote file data transfer.

We estimate that the overhead of the NIC receiving and processing the packet
depends on the Network card bandwidth which in our case is 1300 Mbps, thus,

31

the overhead will be the amount of data we are sending (64 byte) divided by the

c 1 1 sec 1MB 9ns _
bandwidth: 64 byte X —z =m0 X 1048576 Byies. X 10—~ = 46.95012ns

Software Overhead: In this test, there is also a network penalty involved since we
must now wrap packets with the correct TCP/IP protocol, and transmit them
through the network interface card. The same operations must then be performed
in reverse to receive the data from the network. In the localhost to localhost case,
according to our research, when we trap to the OS to send the packet, the OS will
identify it as sending the data to itself and immediately return it back to the
application. Therefore, we predict the network penalty to be low in this case as we
do not actually have to send data over the network. We also know that there is a
~12ns delay for taking time measurements, therefore this overhead will be
included in each measurement of round trip time on the network.

We ran the ping command on our local machine and saw that pinging the
localhost from our local machine had the following results. We expect our results
to be very similar to 0.103 ms, which equates to 103000 ns, because we are
implementing the same functionality of sending and receiving one packet from
client to server.

--- 127.0.0.1 ping statistics ---100 packets transmitted, 100 packets received,
0.0% packet lossround-trip min/avg/max/stddev = 0.043/0.103/0.976/0.122 ms

We ran the ping command on our local machine and saw that pinging the remote
server from our local machine had the following results. We expect our results to
be very similar to 106.464 ms, which equates to 106464000 ns, because we are
implementing the same functionality of sending and receiving one packet from
client to server and will receive the same network penalty as the ping command.

--- 18.208.180.236 ping statistics ---
100 packets transmitted, 99 packets received, 1.0% packet loss
round-trip min/avg/max/stddev = 82.689/106.464/495.338/61.463 ms

Results:

Localhost
Average Time Taken 221649.920000 ns
Median Time Taken 193440.800000 ns
Std Dev. 233854.52007818536

32

Predicted Time Taken 103000 ns
Remote
Average Time Taken 86696686.912000 ns
Median Time Taken 85589230.400000 ns
Std Dev. 29953126.05603457
Predicted Time Taken 106464000 ns
Analysis:

Our results for an application level ping from localhost to localhost are
approximately 100,000 ns slower than the results for a ping from localhost to
localhost using the ping command. We attribute this difference to the fact that the
ping command is using ICMP requests which are handled at the kernel level and
not the application level. Therefore, those requests are immediately sent back to
the client without ever needing to cross the protection domain from kernel to
application. In our application level ping, we perform the following protection
domain crossings:

client app — localhost kernel — localhost kernel — server app — localhost
kernel — localhost kernel — client app.

This shows that we cross the protection domain boundary 4 times to send a
message from the client and receive the return message from the server.
Compared to the ping command, which services ICMP requests at kernel level,
there will only be two protection domain crossings and those are between the
client and the localhost kernel. The server application is never involved.

Our results for an application level ping from localhost to a remote server are
approximately 19,767,313 ns faster than the results for a ping from localhost to a
remote server using the ping command. We assume that the ping command has
other overheads such as DNS that may cause an increase in the latency for ping
requests. However, it is valid to note that the time for pinging a remote server was
many orders of magnitude larger than for pinging the local host for both our
application level ping and the ping command.

In both experiments, we see a large standard deviation but this is expected. Using

the network always introduces variability as the network is very chaotic. Packets
may need to be re-sent, the network may have a lot of traffic, or the machine may

33

be under a lot of stress. All of these factors could introduce variability in our
measurements.

b. Peak Bandwidth:

Methodology:
For this experiment we have two C files, one of which contains the client code,
and one of which contains the server code.

The client code is what contains most of the functionality for this test. We always
run the client code on our local machine. The client will first create a socket, and
then choose the IP address of the server to connect to based on the test we are
doing (local or remote), and lastly connect to the server on port 5000. Now that
we have connected to the correct server we begin our experiment. We first
initialize a data array to 256 bytes to use this as the data to send over the socket to
the server. We chose to send data in 256 byte chunks because this would allow us
to simulate a streaming interface for sending data over the network link to the
server. Next we specify the total amount of data to send to the server as x GB (our
sent data size varied to show varying results, this is explained in the analysis
section) as this should be enough to saturate the network link and see our peak
bandwidth. Next, for 100 samples we do the following: get the current time as the
start time, in a while loop send 256 byte chunks of data over the socket until we
have sent a total of x GB, and then get the current time as the end time. Once we
have gathered all the time taken for each sample, we close the socket and
calculate the bandwidth metrics in terms of bytes/sec, MB/sec, GB/sec, and
Gbits/sec.

The server code is written to be very simple. The server will open a new socket,
bind to the socket on port 5000, and then listen on the socket. It then will
infinitely loop to wait for a client connection request and accept it once one comes
in. Once a connection request arrives, a while loop begins that continuously
receives data that until the amount of data the client stops sending data (in this
case x GB). No timing measurements are taken on the server. This server code can
be ported directly from the localhost onto our remote machine and run the same
way.

To run the test for localhost to localhost we specify the server address as 727.0.0.1
and for localhost to remote host test, we specify the server address as the ip
address of our Amazon EC2 Server. Note that we also confirmed the bandwidth
for the server is higher than the local machine and therefore we will truly test the
throughput for sending data over the network.

34

Prediction:

Base Hardware: The only hardware that is directly involved in our timings for this
experiment is the Network Interface Card (NIC). The NIC will be responsible for
sending packets. This exact overhead depends on the amount of data we are
sending, but once we know that we can use the latter half of the equation shown
in the round trip time calculations to find this overhead.

Software Overhead: From CSE221 this quarter, we learned that the cloud has high
latency and low bandwidth. We are using an Amazon EC2 instance which is a
cloud machine. Therefore, we expect the network penalty to be high as we try to
send more data to the server. We also know that our server is located in North
Virginia, therefore the distance the packets must travel is very far. We expect our
network penalty to increase with the amount of data we are sending. From our
Network Experiment A, we saw that the round trip time for 1 packet was
86696686.912000 ns which is equivalent to 86 ms. Therefore we will multiple 86
ms with the number of packets we send which are of size 256 bytes.
Mathematically this is (data size/256 bytes) X 86 ms approximately which is
a very large overhead. We also know that there is a ~12ns delay for taking time
measurements, therefore this overhead will be included in each measurement of
Network peak bandwidth.

To have a benchmark to compare our empirical results with, we used a tool to
measure the maximum achievable bandwidth on IP networks called iperf. We ran
the iperf command to localhost in order to measure the bandwidth in a loopback
interface and we saw that the average was 29.9Gbits per second. We also ran the
iperf command from localhost to remote host in order to measure the bandwidth
to the remote interface and we saw that the average was 31.2 Mbits per second.

Since we are conducting the same experiment of timing the operation of sending
the entire file and calculating the bandwidth we would expect our results to be
similar.

Interval in Transfer size in Bandwidth in
seconds GB seconds
Localhost to 0.0 - 10.0 sec 34.8 GBytes 29.9 Gbits/sec
127.0.0.1
Localhost to 0.0 - 10.2 sec 37.9 MBytes 31.2 Mbits/sec
Remote host

35

Results:

Localhost to 127.0.0.1

Transfer size in Average Median Std. Dev

GB Bandwidth Bandwidth

0.5 (100 samples) | 411.60003 385.55867 166.35183
MB/sec MB/sec MB/sec

1 (100 samples) 5954.34948 844.90041 18099.44999
MB/sec MB/sec MB/sec

2 (20 samples) 13896.21993 2538.49017 35876.40512
MB/sec MB/sec MB/sec

4 (10 samples) 24019.61066 4785.50701 53242.04703
MB/sec MB/sec MB/sec

6 (10 samples) 17498.04589 9125.13749 21071.99067
MB/sec MB/sec MB/sec

8 (10 samples) 108529.42285 712593147 142991.66995
MB/sec MB/sec MB/sec

10 (10 samples) 15418.52693 9313.70769 15129.30231
MB/sec MB/sec MB/sec

Localhost to Remote host

Transfer size in Average Median Std. Dev

MB Bandwidth Bandwidth

32MB (10 38.27136 MB/sec | 37.99042 MB/sec | 11.04037 MB/sec

samples)

64MB (10 334.88487 106.98267 704.59183

samples) MB/sec MB/sec MB/sec

128MB (10 158.87030 110.47535 96.72235 MB/sec

samples) MB/sec MB/sec

256MB (10 41.36245 MB/sec | 296.94640 159.65345

samples) MB/sec MB/sec

36

512MB (10 40775.47702 662.82791 118455.46537
samples) MB/sec MB/sec MB/sec
1024MB (10 5268.90420 1710.22834 10785.60389
samples) MB/sec MB/sec MB/sec
2048MB (10 2962.65423 2201.57866 1272.88572
samples) MB/sec MB/sec MB/sec

Localhost Peak Bandwidth

== Average Bandwidth

50000

10000

5000

Bandwidth (GB/s) Log Scale

1000

500

37

6

Transfer size (GB)

== Median Bandwidth

10

Remote Peak Bandwidth

== Average Bandwidth == Median Bandwidth

10000
5000

1000
500

Bandwidth (MB/s) Log Scale

100
50
32 MB 64 MB 128 MB 256 MB 512 MB 1024 MB 2048 MB

Transfer size (MB)

Analysis:

First, we will begin our analysis of the Localhost to 127.0.0.1 results. We see here
that the bandwidth measurements are increasing in MB/sec transferred as we
transfer larger amounts of data. However when we reach 6 GB and on, we see that
all bandwidth measurements are ~10000 MB/sec. This means that we have found
the peak bandwidth for the Localhost to 127.0.0.1 data transfer. For larger
amounts of data, the machine becomes bottlenecked by the amount of data it
needs to send and how much it can actually send over the network.

Next, we will analyze the results for Localhost to Remote host. We were unable to
perform this test using the data transfer sizes that we used for localhost to
localhost. The time required to send data to and from the remote server was much
longer, though our results don’t reflect this because those are not the total times
for the program. Using the results we gathered, we see a lot of variability in our
measurements. This is due to the fact that the connection to the remote server
includes the network and the network itself is very volatile. We are also using a
free tier server (z2.micro) from Amazon AWS, therefore our machine is not meant
to provide superior performance. Third, the remote machine is located very far
away from Northern California where the tests are being performed. Looking at
the results, we can see that the median bandwidth increased as we increased the
amount of data transferred, however it begins to plateau at ~2500 MB/sec. We
believe that this is the peak bandwidth over the network for the machine.

38

Comparing the results of the two connections, we see that the remote test has
much lower bandwidth metrics than the remote host. This is exactly what we
expected because the network penalty of sending data will require the remote test
to use more time to send the same amount of data as the localhost test. Therefore
the remote bandwidth will decrease. It is also interesting to see how much more
variability occurs with the remote test compared to the localhost experiment.

In both experiments, we see a large standard deviation but this is expected. Using
the network always introduces variability as the network is very chaotic. Packets
may need to be re-sent, the network may have a lot of traffic, or the machine may
be under a lot of stress. All of these factors could introduce variability in our
measurements.

c¢. Connection Overhead:

Methodology:
For this experiment we have two C files, one of which contains the client code,
and one of which contains the server code.

The client code is what contains most of the functionality for this test. We always
run the client code on our local machine. We first initialize the server ip address
as the localhost or remote and then specify port 5000 as the port we want to
connect to. In a for loop, the client will first create a socket to connect to the
server on port 5000. It will then perform the set up operation by calculating the
start time, executing the connect procedure to connect to the server, and then
calculating the end time to provide us with the total time taken to set up the
connection. Next we sleep for 1 second to allow the connection to stabilize. We
then perform the tear down operation by calculating the start time, executing the
close procedure on the socket used to connect to the server, and then calculating
the end time to provide us with the total time taken to tear down the connection.
We repeat this process for 100 samples to get a stable statistical measure for both
operations.

The server code is written to be very simple. The server will open a new socket,
bind to the socket on port 5000, and then listen on the sock. It then will infinitely
loop to do the following. It will wait for a client connection request and accept it
once one comes in. No timing measurements are taken on the server. This server
code can be ported directly from the localhost onto our remote machine and run
the same way.

39

To run the test for localhost to localhost we specify the server address as 727.0.0.1
and for localhost to remote host, we specify the server address as the ip address of
our Amazon EC2 Server.

Prediction:

Base Hardware: The network interface cards of both the local machine and the
Amazon EC2 server are used to receive and transmit packets of file data across
the network. In this case, this hardware should provide only minimal penalty as
we are sending only small data packets over the network. We cannot know the
exact overhead because we do not know how much data the machine will send to
establish a connection, however, For the exact measurement formula of the NIC
overhead, please refer to the calculations done for round trip time.

Software Overhead: There is a small network penalty for this test to wrap data in
the TCP/IP protocol, encrypt it, and transmit it through the NIC. The same
operations must then be performed in reverse to receive the data from the
network. However, since we are sending minimal packets and only once for
connect and once for close, the overhead should be minimal. In the localhost to
localhost case, according to our research, when we trap to the OS to send the
packet, the OS will identify it as sending the data to itself and immediately return
it back to the application. Therefore, we predict the network penalty to be low in
this case as we do not actually have to send data over the network. We also predict
the network penalty to be low for the localhost to remote host case as we are
sending minimal data. We also know that there is a ~12ns delay for taking time
measurements, therefore this overhead will be included in each measurement of
connection setup and teardown time.

We predict that the time taken to set up the connection will take 10,000s of ns
longer than to tear down the connection. The reason for this is because setting up
the connection will need to have acknowledgement from the server if we actually
connected and this could take longer. However, the tear down operation is one
sided in that it closes the connection on the client side and the server will react on
it’s own time to handle the closed connection. Therefore this is quicker. However,
these operations require kernel support so we believe crossing the protection
boundary to set up and tear down the socket will take 10,000 ns and therefore
these are long operations.

Results:
Localhost

40

Average Set Up Time

573685.328000 ns

Median Set Up Time

343928.800000 ns

Std Dev. Set Up Time

119640.589040 ns

Average Tear-down Time

75729.408000 ns

Median Tear-down Time

51800.800000 ns

Std Dev. Tear-down Time

27034.683077 ns

Remote

Average Set Up Time

95011011.536000 ns

Median Set Up Time

93587943.600000 ns

Std Dev. Set Up Time

395352.401160 ns

Average Tear-down Time

136107.120000 ns

Median Tear-down Time

105210.400000 ns

Std Dev. Tear-down Time

33702.944835 ns

Analysis:

As we predicted, the setup time usually takes longer than tear down time. This is
because in order to set up we need to send a packet to the server and wait for an

acknowledgement. We can see that our average set up time for remote servers is
actually roughly the same as our ping time, which further supports this claim.

We predicted that this time will be 10,000s of nanoseconds higher but in our
results we see that it is only 1,000s of nanoseconds higher. This can be because
we overestimated how fast tear down happens. According to GNU
Documentation we see that when we close the socket, we still perform many
operations and cleanup code. This can take some time.

Another trend that we see is that local connection setup takes much longer than
remote connection set up, which makes sense, because we now have to wait for
the transmission of packets over remote channels. But we also see that tear down
times are roughly the same for both remote and local connections. This also

41

https://www.gnu.org/software/libc/manual/html_node/Closing-a-Socket.html
https://www.gnu.org/software/libc/manual/html_node/Closing-a-Socket.html

makes sense because we know that tear downs are mostly cleanup that happens on
the client side, so we would expect that the local and remote connections both
have similar tear down time.

In both experiments, we see a large standard deviation but this is expected. Using
the network always introduces variability as the network is very chaotic. Packets
may need to be re-sent, the network may have a lot of traffic, or the machine may
be under a lot of stress. All of these factors could introduce variability in our
measurements.

d. Networks Experiments Comparison:

Evaluate for the TCP protocol.

In our Network experiments, we utilized the TCP Protocol to send data across the
network. TCP is designed to break the data sent from a client into packets that can
be pushed over the network to the receiving server. We implemented our
client-server communication using the TCP/IP API in C (socket(), connect(),
listen(), accept(), recv(), send(), close()).

Comparing the remote and loopback results, what can you deduce about baseline
network performance and the overhead of OS software?

In all of our network experiments, we saw that the loopback interface performed
much more favorably than our remote interface. These results demonstrate that
even though the OS is not as efficient as application level, the network provides
even less efficiency. We saw this during CSE 221, since networked operating
systems such as the V Kernel exhibited lots of inefficiencies due to the network
penalties it faced. In certain cases, such as the data center, the network penalty
may be acceptable due to the high bandwidth and the high latency of the network.
However, we used the cloud for our experiments and proved that the network
penalty was unacceptable when compared to the overhead of operating system
software.

For both round trip time and bandwidth, how close to ideal hardware
performance do you achieve?

For our round trip time experiment, we saw that the overhead for localhost was
0.22164992 ms and the overhead for the remote host was 86 ms. Ideally, we
would like the remote host to perform as well as the localhost or better, but we see
here that there is an extreme performance difference (~85 ms) between the
network and ideal hardware performance. This is a large enough difference where
the performance degradation is visible to the user.

42

For our bandwidth experiment, we saw that the bandwidth for localhost was
~10000 MB/sec and the bandwidth for remote host was ~2500 MB/sec. This
explicitly shows that the network limits the performance of sending and receiving
data to very small amounts. Ideal hardware performance would be above 10000
MB/sec, and we are achieving only 25% of that performance when using the
network.

What are reasons why the TCP performance does not match ideal hardware
performance (e.g., what are the pertinent overheads)?

TCP performance does not match ideal hardware performance for many reasons.
First reason is that it must first chunk the data into packets and then wrap them in
the TCP/IP protocol. We will need to do this for each packet and there may be
many packets being sent so this overhead which is compounded.

Next is in order to send packets, we must interact with the kernel and the NIC to
access the network and crossing the protection domain to do this is expensive.
TCP also uses retransmission to ensure that packets reach their destination and
this is also expensive if we need to retransmit frequently. On the receiving end of
the TCP packets, the machine must unwrap the packets to access the data as well
as piece together the data before actually acting on it. These are all overheads in
TCP that explain why TCP performance does not match ideal hardware
performance.

43

File System

a. Size of File Cache:

Methodology:

We begin this experiment by creating a 16GB file in our directory that we can use
in order to read from and complete our experiments. The file is a generic text file
filled with random characters and was created before running our experiments.
We reuse the same 16GB text file for each file size in the experiment which
means that as we vary the file size, we will still be reading data from the same
file. This should eliminate any discrepancies that may arise from running the
experiment as well as display the increase in time taken as the amount of data
from the file increases. We initialize a 64KB buffer that we use to read the file in
chunks so that we avoid filling up the heap. This is similar to a streaming
interface. If we didn’t use this method of reading data, we may cause situations in
which we would need to page to the disk and we want to avoid this. We initialize
the amount of data to read, or file size, to be 0.5GB at the beginning of the
experiment, and increment by 0.5GB each iteration. We continue this process for
32 file sizes in order to get to a final file size of 16GB, meaning we are reading
the entire file. Each of these different size reads will also be done 16 times each in
order to get an average time that would better illustrate the size of the file cache.
This is to amortize any startup effects when reading the files.

It is important to note that since we are testing the size of the file buffer cache,
every time we read for a new file size, we start at byte 0 in the file. Therefore all
of the data that was in the file buffer cache on the previous read will still be there.
This will allow us to see the increase in time taken to read more data from the file
buffer cache as well as when the file buffer cache no longer contains data that is
being read in.

We performed this experiment after rebooting the machine to avoid any issues
with the caches’ state when we started the experiment.

Prediction:

Base Hardware: We are interacting with both main memory and disk in this
experiment. According to our research, accessing the disk will require 1-3 ms and
from our Memory Operation A experiment we know that accessing memory has a
12 ns delay. We also must take into account the disk transfer rate when we page
fault since this will affect how fast we can read data from the disk. The page fault
service time is described further in the Software Overhead section.

44

https://storageswiss.com/2019/04/18/not-achieving-the-ssd-performance-you-expected-latency/

Software Overhead: When we page fault, there will be extra overhead that we
measure because we are now performing a disk read. When performing a disk
read we must execute the read syscall, transfer control to the kernel to handle the
disk I/O, and then copying that data into main memory for the process to access.
This is all done in software and we know that syscalls can take ~4000 ns which is
relatively large. From our memory operation C the time it takes for software to
service a page fault is 36 ms, therefore the overhead for reading will be very large
when we page fault. We also know that there is a ~12ns delay for taking time

measurements, therefore this overhead will be included in each measurement of
FBC.

After some research, we found out that the File Buffer Cache (FBC) grows
dynamically and that modern OSes aggressively cache file data. Based on this
knowledge, we predict that the time it takes to read a file grows linearly as a
function of file size. But there are spikes at certain sizes (The exact number of
these sizes are very hard to predict since they are dynamically allocated and
depend on the specific hardware we are using). These spikes should occur as we
read larger and larger files, because the OS will just allocate a larger chunk of
main memory to the FBC which causes file data to be cached and that is why the
read times will suddenly become very fast even for large files. After the decrease
in read time, it will once again grow linearly as a function of the file size until we
hit the next threshold where the OS will increase the FBC size again and we will
see another spike and so on.

Results:

45

http://hints.macworld.com/article.php?story=20010613140025184

Average Time and Median Time
== Average Time == Median Time

1500

1000

500

Time Taken to Read the File in Milliseconds

0

LR R LLR LRI
OOl OGO glogiogl ogicgiogioglOgi o Ol O O O OGO OGO O O OGO OGOl)
A N M O M O S MO MO

L Q
OO
L NE Y A

q

File Sizes

Analysis:

As we predicted, the graph above shows a linear growth. This means that as we
increase the size of the file, it takes longer to read the contents of that file.
However, we see that we also have 3 peaks, followed by 3 drops. As we
predicted, these peaks and drops are due to the OS allocating more pages of
physical memory for the FBC which allows the process to just aggressively cache
the entire file. Thus, after this increase in the size of FBC we see a huge drop in
the time taken because the file content is now cached and takes less time to read.
The FBC uses prefetching for file data to exploit spatial locality because it wants
to avoid FBC misses by storing data that will be accessed in the near future into
physical memory. Then we see the same pattern again and again. There is a linear
growth in the time taken as the size of the file increases, and then at a certain
point, the OS increases the size of FBC and we see a drop since the file data is
cached.

We can empirically see that these peaks happen at 8. 5GB, 12GB, and 15GB, for
the machine we are using. Again these sizes are dynamically allocated by the OS
and depend on how much main memory is available, how many other processes
are running and many other factors.

Note that we didn’t use a standard deviation metric in this test as it was not useful
in understanding our results.

46

b. File Read Time:

Methodology:

To compare the time it takes to read a file sequentially versus randomly as a
function of file size, we performed the following experiment. We decided to use a
16GB file to determine how our read times fluctuated as file size increased. To
avoid caching effects and explicitly read from the disk when performing I/Os, we
opened the file using the ¥ NOCACHE and the O RDONLY flags (we discuss the
issues with this in the analysis section). We then malloc a buffer that is the size of
a block (4096 bytes) in the file system on our machine (used the command
diskutil info /| grep "Block Size" to confirm this).

Now we begin our reading tests. For each file size, we increment in sizes of
0.5GB (0.5GB, 1GB, 1.5GB, ..., 16GB). We perform both sequential reads and
random reads. Note that because we are performing these I/Os directly from the
disk, we do not need to worry about cache effects (not necessarily true, we expand
on this in the analysis section) for reading the same data in and more every new
file size or for reading the same file twice (sequentially then random). Once we
receive the total time taken to perform the complete I/O for each file size, we
store the results in a results file.

The sequential read operation is performed as follows: First, seek to the first byte
of the file. Next, read the file sequentially in 4096 byte chunks (time how long it
takes to read each chunk from the file) until the complete file is read. Finally
return the average per-block read time.

The random read operation is performed as follows: In a loop, we first select a
random offset in the file that is not within 4096 bytes of the start or end of the file.
Next, we seek to that byte offset of the file, read 4096 bytes from that offset (time
how long it takes to read the chunk from the file), repeat this process until we
have read the specified file size number of bytes. Finally, return the average
per-block read time.

Prediction:

Base Hardware: We are interacting with the disk in this experiment. According to
our research, accessing the disk will require 1-3 ms. We also must take into
account the disk transfer rate when we read from the disk as this will dictate how
fast we can perform our reads. It is important to note that we could not find an

47

https://storageswiss.com/2019/04/18/not-achieving-the-ssd-performance-you-expected-latency/

effective way to turn off the FBC in MacOS, therefore the disk penalties may not
appear in our results.

Software Overhead: When performing a disk read we must execute the read
syscall, transfer control to the kernel to handle the disk I/O, and then copying that
data into main memory for the process to access. This is all done in software and
we know that syscalls can take ~4000 ns which is relatively large. We also will
see an increase in the number of instructions executed relative to how many times
we iterate in our loop to read by block size. The loop will incur penalties in our
time as well as the timing mechanisms we use. Another software overhead that
could be added here is the loop overhead measured in experiment 1a. ii (roughly
2us). However, the loop in that test ran for 1000 times, whereas this experiment
will run for the number of blocks in the file. That is each sample will run for
filesize / 4096 bytes iterations, so a portion of our measured results are just the
loop overhead, we believe the software overhead should grow as the size of the
file increases. We also know that there is a ~12ns delay for taking time
measurements, therefore this overhead will be included in each measurement of
File read time.

We expect to see that as we increase the size of the file we are reading, the
sequential average per-block reading time should only be increasing by a small
amount whereas the random average per-block reading time should increase much
more as we get towards the larger file sizes. In terms of time (ns), we performed
some initial testing and saw that the average-per block time (ns) to read 1GB of
file data sequentially was ~2000 ns and randomly was ~2500 ns. Based on these
results we predict that the difference of 500ns between the two times will
compound as the number of GBs being read increases.

Results:

48

Local File Read Times

== Seguential Read Times (ns) == Random Read Times (ns)

60000
2
m 40000
W
g
= 20000
£
[44]
E
= 8000
] 6000
7 4000
@
(=1
&
o 2000
2
[1:1

05 1 5 10
File Size (GB) log scale
Analysis:

From our results, we can conclude that the sequential average per-block read time
is relatively constant as we increase in file size. However, it is interesting to see
that initially the random average per-block read time is lower than the sequential
read time up to 1GB. Then at around 8GB, we see a large divergence between the
read times where it takes much longer for random read operations. We already
know that caching should not affect the read times, therefore this means there is a
difference between how fast those data blocks are accessed and read. From our
interpretation of our graph, we believe that sequential access is better because of
how modern disks optimize the layout of the data on disk. A discussion of what
“sequential” means follows in the next paragraph.

We must explain the faults in this experiment. We are using MacOS to execute
our experiments, and after thorough testing we were unable to effectively turn off
or limit the file buffer cache. We first attempted to use the flag ¥ NOCACHE
when opening the file, but we saw that this actually had no impact. We then tried
to use shell commands such as ulimit to try to limit the FBC, but this was also
unsuccessful. Therefore, for this experiment we believe that our results have been
skewed because the FBC has not been turned off (it is not possible on MacOS).

In terms of “sequential” access of a file, we logically view it as going in
consecutive blocks on disk. On the actual disk, this may not be true because even
though we try to lay out blocks for a file system physically close to each other
(using cylinder groups and disk caching to handle consecutive read misses) we

49

may sometimes spill over to other cylinder groups and therefore potentially have
more latency. However, that is not the common case. Therefore, sequential reads
can take advantage of the consecutive layout of blocks on disk whereas random
reads do not. We also know that modern disks can cache large amounts of
consecutive data blocks that exist after the current data block being read. This
optimization would allow for sequential reads to not have to truly “read from
disk” as they will use the disk cache, but random reads may have to. We
understand that we are using an SSD that does not have spinning disks or multiple
heads however the argument of data block locality on disk and spilling over to
other parts of disk still holds. The SSD will do its best to cluster similar data
together, but at some point this will no longer be possible.

We are unsure as to why the major differentiation point between the two read
times is at 8GB, but we believe this is due to the caching effects of not being able
to turn off the FBC. We see a similar change in results right at 8GB in experiment
a for file systems as well.

Note that we didn’t use a standard deviation metric in this test as it was not useful
in understanding our results.

¢. Remote File Read Time:

Methodology:

To perform the following test, we used the UCSD ieng6 server as our “local
machine” because for these machines the home directory is mounted over NFS, so
accessing a file under the home directory will be a remote file access.

Since the account we used to access the ieng6 server had limited disk quota, we
determined that it was valid to use a smaller file (0.5GB = 512MB) than what we
used for our local file read time. Since we were now running on a Linux machine
(CentOS Linux 7), we were able to use the O DIRECT flag to explicitly read
directly from the disk when performing I/Os and avoid caching effects. Note
when opening the file, we specified the O DIRECT and the O RDONLY flags.
We then malloc a buffer that is the size of a block (4096 bytes) in the file system
on our machine (couldn’t confirm this as all commands to get this information on
ieng6 required sudo privileges).

Now we begin our file reading tests. For each file size, we increment in sizes of

16MB (16MB, 32MB, ..., 512MB). We perform both sequential reads and random
reads. Note that because we are performing these I/Os directly from the disk, we

50

do not need to worry about cache effects for reading the same data in and more
every new file size or for reading the same file twice (sequentially then random).
Once we receive the total time taken to perform the complete I/O for each file
size, we store the results in a results file.

The sequential read operation is performed as follows: seek to the first byte of the
file, read the file sequentially in 4096 byte chunks (time how long it takes to read
each chunk from the file) until the complete file is read, and then return the
average per-block read time.

The random read operation is performed as follows: in a loop, select a random
offset in the file that is not within 4096 bytes of the start or end of the file, seek to
that byte offset the file, read 4096 bytes from that offset (time how long it takes to
read the chunk from the file), repeat this process until we have read the specified
file size number of bytes, and then return the average per-block read time.

Prediction:

Base Hardware: We are interacting with the disk in this experiment. According to
our research, accessing the disk will require 1-3 ms. We also must take into
account the disk transfer rate when we read from the disk as this will dictate how
fast we can perform our reads. The network interface cards of both the ieng6
client server and the ieng6 NFS server are used to receive and transmit packets of
file data across the network. Both of these network cards have a max bandwidth at
which they can transmit data to and from the network. Therefore, the performance
of these cards could limit the performance of the remote file data transfer. We
were unable to find the actual maximum bandwidth values for the servers. In this
test, there is also a network penalty involved since we must now wrap packets
with the correct TCP/IP protocol, encrypt them, and transmit them through the
network interface card. The same operations must then be performed in reverse to
receive the data from the network. We believe the ping command and our results
from Network Operation A are good estimates for this network penalty. We
performed the ping command between the two iengb servers to gather this
estimate and it was 0.388 ms. We also know that there is a ~12ns delay for taking
time measurements, therefore this overhead will be included in each measurement
of File read time.

Software Overhead: When performing a disk read we must execute the read
syscall, transfer control to the kernel to handle the disk I/O, and then copying that
data into main memory for the process to access. This is all done in software and
we know that syscalls can take ~4000 ns which is relatively large. We also will

51

https://storageswiss.com/2019/04/18/not-achieving-the-ssd-performance-you-expected-latency/

see an increase in the number of instructions executed relative to how many times
we iterate in our loop to read by block size. The loop will incur penalties in our
time as well as the timing mechanisms we use. Another software overhead that
could be added here is the loop overhead measured in experiment 1a. ii (roughly
2us). However, the loop in that test ran for 1000 times, whereas this experiment
will run for the number of blocks in the file. That is each sample will run for
filesize / 4096 bytes iterations, so a portion of our measured results are just the
loop overhead, we believe the software overhead should grow as the size of the
file increases.

We predict that differences in the time it takes to read sequentially from the disk
versus randomly will be dwarfed by the network penalty. We assume that the
ieng6 servers have strong enough I/0O bandwidth such that the rate at which we
transfer data is bottlenecked by the bandwidth of the network. Therefore, we
expect to see little variation in the difference between random versus sequential
reads for each file size as well as larger read average per-block read times than the
local file read experiment.

Results:

Remote File Read Times

== Sequential Read Times (ns) == Random Read Times (ns)

O

g 700

(=1

i=]

w

(=

@

E

-

[=]

i=]

2

@

(=1

24]

(=]

E

[24]

=1

< 600

20 40 &0 80 100 200 400
File Size (MB) log scale

Analysis:

These results are slightly different than what we had predicted initially. Our initial
prediction was that the random versus sequential read times would not vary due to
the network penalty. We predicted that the network penalty would mask the

difference in time and therefore the average per-block read time would be similar.

52

The same discussion in part b about how sequential reads are actually performed
can be applied here as well.

However, what is interesting is that the overall average per-block read time is
significantly lower than the overall average per-block read time for the local file
read average per-block read time. It is difficult to reason about this for the reasons
we talk about in the next paragraph.

We cannot truly compare the results of the local file read time and the remote file
read time as there are multiple different factors for each test. One is run on
Ubuntu and the other on MacOS. One is run with a 0.5GB file and the other is run
with a 16GB file. One has caching turned off and the other was not able to turn it
off.

Note that we didn’t use a standard deviation metric in this test as it was not useful
in understanding our results.

d. Contention:

Methodology:

We conducted the contention experiment using a bash script and C file. We have
one C file that will read the filename passed in from the command line and open it
with the read only flag using the open system call. We then malloc a buffer that is
the size of a block (4096 bytes) in the file system on our machine (used the
command diskutil info /| grep "Block Size" to confirm this). Next we read 1GB
from the file by doing the following: seek to the first byte in the file, record the
start time, in a loop, read from the file in block size chunks until we have read the
complete amount of data we want to read, and record the end time. Finally, we

calculate the time taken to read 1GB from the file, and write that time to a results
file.

What was described in the paragraph above was for what one process will do.
Next, we will explain how we conducted this test to see the average time taken to
read the same amount of data while varying the number of processes performing
the same program on different input data files in parallel. To run the experiment,
we use a bash script that will loop through the number of parallel processes we
want to test, and then create and execute a command that follows this template:
“a.out filel & ./a.out file2 & ... & ./a.out fileN'. Remember that each process
running will write it’s results to the same results file as all other processes
however it will append its time taken to this file and therefore preserve any
previous data in the file. It is interesting to note that as we increase the number of

53

processes, we dynamically create new copies of the same file to pass into each
Ja.out execution. The reason for this is to avoid any caching effects of the disk
since we are not able to perform raw disk I/Os directly from our C file. The flag

F NOCACHE was determined to be not working to read a file from disk as our
results drastically changed running this experiment with the dynamic copies of the
same file rather than the same file for all processes.

Prediction:

Base Hardware: We are interacting with the disk in this experiment. According to
our research, accessing the disk will require 1-3 ms. We also must take into
account the disk transfer rate when we page fault since this will affect how fast we
can read data from the disk. The page fault service time is described further in the
Software Overhead section. It is also important to think about parallelism in this
case and if the base hardware is able to parallelize these processes on different
cores. Therefore, this could actually improve the performance of the base
hardware even though the number of parallel processes is increasing. However,
according to the CSE221 lecture we learned that disk accesses must be serialized
and this serialization happens at the hardware level. Therefore parallelism may
not have a large impact on performance in this case,

Software Overhead: When we page fault, there will be extra overhead that we
measure because we are now performing a disk read. When performing a disk
read we must execute the read syscall, transfer control to the kernel to handle the
disk /0, and then copying that data into main memory for the process to access.
This is all done in software and we know that syscalls can take ~4000 ns which is
relatively large. From our memory operation C the time it takes for software to
service a page fault is 36 ms, therefore the overhead for reading will be very large
when we page fault. In addition to these overheads, we also have software
overhead for context switches. There are many processes running at the same time
and the scheduler will do it’s best to give each process its’ fair share of CPU time
but that involves process context switch overhead which we measured in
experiment le. i1 which was roughly 25ps. We cannot predict exactly how many
context switches happen, but we know they will happen more often as we add
more and more processes. We also know that there is a ~12ns delay for taking
time measurements, therefore this overhead will be included in each measurement
of this experiment.

We predict that as the number of parallel processes increases, we will have less
effective use of the disk. Therefore, we predict the average time taken for I/O of

54

https://storageswiss.com/2019/04/18/not-achieving-the-ssd-performance-you-expected-latency/

the same amount of data from different copies of the same file across all processes
will also be increasing.

Results:

Contention to Read 1GB from 4GB file

800000000

—~ 600000000
2
c
(0]
x
i

o 400000000
£
=
©
()]
i

:% 200000000

0

2 4 6 8 10
Number of Processes
Analysis:

Our results from our experiment are in line with our predicted results. As the
number of parallel processes increases, the average time taken for I/O of the same
amount of data from different copies of the same file across all processes will also
be increasing. In short, with all other factors held constant except for the number
of parallel processes and the number of different copies of the same file being
read, we see that there is a decrease in performance as the number of parallel
processes increases.

To understand this, we can look at the structure of the disk. The disk has a certain
bandwidth at which it can transfer data from the disk into memory. When we have
one process executing, that process will be able to use almost all of the disk
bandwidth to perform its reads since the disk is not being used by any other
process. However, as we increase the number of parallel processes reading from
the disk, the disk will need to service each of the processes causing the disk
bandwidth to be divided amongst each process (n processes means each process
gets a disk bandwidth of bandwidth/n). Now each process will be reading in the
same amount of data as before, but cannot transfer it as fast as if it was running by
itself. This results in each process taking longer to complete its I/O and therefore
increasing the time taken.

55

Note that we didn’t use a standard deviation metric in this test as it was not useful

in understanding our results.

56

Final Results Table

Operation Base Estimated Predicted Time | Measured Time Measured Time

Hardware Software (Average) (Median)

Performance | Overhead
la (i) N/A I15ns~62.5 I5ns~62.5ns | 12.032 ns 10.800 ns

ns
la (i1) N/A 1500 ns 1500 ns 1983.2096 ns 1878.0000 ns
1b (0 args) [N/A 12 ns 12 ns 12.425120 ns 10.800000 ns
Ib (1 args) [N/A 12 ns 12 ns 19.939520 ns 12.000000 ns
Ib (2 args) [N/A 12 ns 12 ns 12.000000 ns 12.353360 ns
Ib (3 args) [N/A 12 ns 12 ns 18.144160 ns 12.000000 ns
1b (4 args) [N/A 12 ns 12 ns 15.401760 ns 14.400000 ns
Ib (5 args) [N/A 12 ns 12 ns 12.933760 ns 12.800000 ns
Ib (6 args) [N/A 12 ns 12 ns 12.738640 ns 12.000000 ns
1b (7 args) [N/A 12 ns 12 ns 17.823760 ns 14.800000 ns
lc (getpid | N/A ~200 ns ~200 ns 20.140000 ns 12.000000 ns
bash)
lc (getpid c) | N/A ~200 ns ~200 ns 14080.99639ns [11831.2 ns
Le (kill) N/A ~500 ns ~500 ns 4395.408800 ns | 3658.80000 ns
1d (1) N/A 10000 ns 10000 ns 11754.554399 ns | 10910.9668 ns
1d (i1) N/A 500000 ~ 500000 ~ 174440.2498 ns 149926.0 ns
1000000 ns 1000000 ns

le (1) N/A 100 ~3000 ns [100 ~3000 ns | 6996.019 ns 7159.6 ns
le (i1) N/A ~5000 ns ~5000 ns 25929.597447 ns | 21828.4 ns
2a (L1) 1.6 ns 12 ns
2a (L2) 4 ns 12 ns

57

2a (L3) 16 - 30 ns 12 ns See results

2a (DRAM) | 60 ns 12 ns

2b (Read) 34.128 2 us 34.128 GB/sec | 15.892250 16.411738

16 loop GB/sec GB/sec GB/sec

unrolls

2b (Read) 34.128 2 us 34.128 GB/sec | 40.053863 40.866384

32 loop GB/sec GB/sec GB/sec

unrolls

2b (Read) 34.128 2 us 34.128 GB/sec | 103.478451 108.946651

64 loop GB/sec GB/sec GB/sec

unrolls

2b (Write) 34.128 2 us 34.128 GB/sec | 19.183353 19.50367

16 loop GB/sec GB/sec GB/sec

unrolls

2b (Write) 34.128 2 us 34.128 GB/sec | 52.3026476 54.46223

32 loop GB/sec GB/sec GB/sec

unrolls

2b (Write) 34,128 2 us 34.128 GB/sec | 119.89727 124.8808

64 loop GB/sec GB/sec GB/sec

unrolls

2c ~10 ps 5-8 ms + ~9 ms 36.76709392 ms | 30.8491800 ms
~12ns

3a (Local) N/A 5000 ns + 12 | 103000 ns 221649.92 ns 193440.8 ns
ns =5012 ns

3a (Remote) | 46.95012ns | 5000 ns + 12 [106464000 ns | 86696686.912 ns | 85589230.4 ns
ns =5012 ns

3b (Local) | N/A 12ns 3827.2 MB/sec | 411.60003 385.55867

0.5GB MB/sec MB/sec

3b (Local) | N/A 12ns 3827.2 MB/sec | 5954.34948 844.90041

1 GB MB/sec MB/sec

3b (Local) | N/A 12ns 3827.2 MB/sec | 13896.21993 2538.49017

2GB MB/sec MB/sec

58

3b (Local) N/A 12ns 3827.2 MB/sec | 24019.61066 4785.50701
4GB MB/sec MB/sec
3b (Local) N/A 12ns 3827.2 MB/sec | 17498.04589 9125.13749
6 GB MB/sec MB/sec
3b (Local) N/A 12ns 3827.2 MB/sec | 108529.42285 7125.93147
8 GB MB/sec MB/sec
3b (Local) N/A 12ns 3827.2 MB/sec | 15418.52693 9313.70769
10 GB MB/sec MB/sec
3b (Remote) | 24 ms (Size / 256) x | 3.9 MB/sec 38.27136 MB/sec |37.99042
32MB 86ms MB/sec
3b (Remote) [47.692 ms (Size / 256) x | 3.9 MB/sec 334.88487 106.98267
64MB 86ms MB/sec MB/sec
3b (Remote) | 98.46 ms (Size / 256) x | 3.9 MB/sec 158.87030 110.47535
128MB 86ms MB/sec MB/sec
3b (Remote) [196.923 ms (Size / 256) x | 3.9 MB/sec 41.36245 MB/sec |296.94640
256MB 86ms MB/sec
3b (Remote) [393.8461 ms | (Size /256) x | 3.9 MB/sec 40775.47702 662.82791
512MB 86ms MB/sec MB/sec
3b (Remote) | 787.69 ms (Size / 256) x | 3.9 MB/sec 5268.90420 1710.22834
1024MB 86ms MB/sec MB/sec
3b (Remote) | 1.57 s (Size / 256) x | 3.9 MB/sec 2962.65423 2201.57866
2048MB 86ms MB/sec MB/sec
3¢ (Local) N/A 5000 ns +12 | 108012 ns 573685.328000 343928.800000
Setup ns = 5012 ns ns ns
3¢ (Local) N/A 5000 ns + 12 | On the order of | 75729.408000 ns | 51800.800000
Teardown ns=5012ns | 10,000 ns, less ns

than time to set

up
3¢ (Remote) | ~47 ns 5000 ns + 12 | 106469012ns | 95011011.536 ns | 93587943.6 ns
Setup ns = 5012 ns

59

3c (Remote) | N/A 5000 ns + 12 | On the order of | 136107.120 ns 105210.400 ns
Teardown ns =5012ns | 10,000 ns, less
than time to set
up
4a -3 ms + 12 36 ms + 4000 | Linear growth See results
ns ns + 12 ns followed by a
spike and a
dropoff after
page fault(s).
4b 1-3 ms (Filesize / Slow linear See results
4096B) x 2us | growth for
+ 4000 ns + sequential
12 ns access, but
exponential
growth for
random access.
4c 1-3 ms + (Filesize / Similar growth See results
0.388 ms + 12 | 4096B) x 2us | rates due to the
ns + 4000 ns + network
12 ns penalty.
4d 1-3 ms 36ms + 25us | Linear growth See results
+ 4000 ns + as the number
12 ns of competing
processes
increases.

60

